
RaspberryPi to measure EEG, ECG, EMG and EOG with Shield PiEEG

In this paper presented hardware and software for shield PiEEG for reading signals through the families

of single-board computers - RaspberryPi, OrangePi, BananaPi, etc. For the most part, the paper provides

technical information on how to implement this device. This device is designed to be familiar with

neuroscience and is one of the easiest ways to get started with EEG measurements.

Ildar Rakhmatulin, PhD, PiEEG, ildarr2016@gmail.com
Source https://github.com/Ildaron/EEGwithRaspberryPI

Presentation https://youtu.be/uK8QF2liO5U

Keywords: RaspberryPi and EEG, ECG, EMG and EOG; brain-computer interface; shield for

RaspberryPi

1. Introduction

The brain-computer interface is a device for reading brain signals in order to identify any correlations that

can be used for practical purposes. In 2021 we developed the brain-computer interface - ironbci [1,2,3]

but the chip shortage significantly increased the cost of the device, after which we switched to PiEEG

shield, which made it possible to reduce the cost of the device and simplify the installation process. The

PiEEG device was presented in general terms at the conference [4] and in the publication [10]. In this

paper we will focus more on the technical details of the implementation of this device.

2. Safety recommendation

The developed device was tested only for Raspberry Pi. During the test, it is forbidden connect the device

to the electrical source, this need for safety and to avoid network interference. Cannot be used this device

when powered via an electrical network and used it only when working with 5V batteries (capacity– not

mote 2000 mAh). General view of the complete assembly of the device in Fig.1.

Fig.1 General View of assembled device: 1 – hat EEG, 2 – monitor, 3 – RaspberryPI and shield EEG, 4 –

power bank

All parts should be connected only with battery – monitor, keyboard, mouse, RaspberryPI and PiEEG

device. The device is connected only directly through GPIO40 to the Raspberry Pi. There must not be any

connections for any elements with the electrical network.

Also observe the following protective measures:

- If the device fails (heating of components, smoke etc.), switch off immediately;

- When you have finished using any electrical appliance, be sure to turn it off and unplug it;

- Never try to fix a malfunction in an electrical appliance yourself;

- Do not touch the components on the board when the device is turned on.

3. Connecting the device

The device is designed to allow single-board computers to read the EEG signal via the SPI protocol from

ADS1299. The next single computers can be connected (not tested yet) - OrangePi, BananaPi, and the

device can be connected via wires to the input of the microcontroller if necessary, Fig.2.

mailto:ildarr2016@gmail.com
https://github.com/Ildaron/EEGwithRaspberryPI
https://youtu.be/uK8QF2liO5U

Fig.2. Device connection scheme, GPIO40

4. Software

Data transfer between Raspberry Pi and ADS1299 using the SPI protocol is written in C at a rate of 250

samples per second for each channel. Data processing realized in Python 3. Software files details from

https://github.com/Ildaron/EEGwithRaspberryPI/tree/master/GUI :

libperiphery.a – static library compiled from https://github.com/vsergeev/c-periphery ,

real_time.py – script for editing processing signal and data visualization,

real_time_massive.c – header call,

real_time_massive.h – register setting for data transfer protocol,

super_real_time_massive.so – compiled dynamic library.

To start the reading EEG signals is possible to write software or download from the git

https://github.com/Ildaron/EEGwithRaspberryPI , then go to the folder - GUI and run the file -

real_time.py. An example of reading is shown in the figure in Fig.3.

Fig.3. EEG signals after band pass filter 1-30 Hz

Through the python script, is possible to configure the parameters for band pass filters. Signal processing

is implemented using the standard scipy library. Through the C file, once per second we receive a data

packet of 2000 data, 250 samples per second for each channel.

Currently we used the next setting for registers for ADS1299:

 write_reg (0x14,0x80);//led

 write_reg (0x05,0x00);//ch1

 write_reg (0x06,0x01);//ch2

 write_reg (0x07,0x01);//ch3

 write_reg (0x08,0x01);//ch4

 write_reg (0x0D,0xFF);//bias N

 write_reg (0x0E,0x00);//bias P

 write_reg (0x09,0x01);//ch5

 write_reg (0x0A,0x01);//ch6

 write_reg (0x0B,0x01);//ch7

 write_reg (0x0C,0x01);//ch8

https://github.com/Ildaron/EEGwithRaspberryPI/tree/master/GUI
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/GUI/libperiphery.a
https://github.com/vsergeev/c-periphery
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/GUI/real_time.py
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/GUI/real_time_massive.c
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/GUI/real_time_massive.h
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/GUI/super_real_time_massive.so
https://github.com/Ildaron/EEGwithRaspberryPI

 write_reg (0x15,0x20);// mics

 write_reg (0x01,0x96);// reg1

 write_reg (0x02,0xD4);// reg2

 write_reg (0x03,0xE0);// reg3

 send_command (0x10);//sdatc

 send_command (0x08);//start

To change the ADS1299 registers, needs to work with the header file - real_time_massive.h, after any

changes, need to recompile the static library, following the next steps for GPIO library for Linux from

https://github.com/vsergeev/c-periphery:

$ mkdir build

$ cd build

$ cmake ..

$ make

That allows receiving the Static Library - libperiphery.a and finally to create a dynamic library for .so -

gcc -shared -home/pi/Desktop/new_spi/c-periphery-master/src real_time_massive.c

/home/pi/Desktop/new_spi/c-periphery-master/build/libperiphery.a -o super_real_time_massive.so

This library can be imported in python script with signal processing (example - real_time.py) via

standard library – ctypes.

In case of errors incompatibility in a python IDE, it is necessary to check the versions of installed libraries

https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/pip.txt

The PIEEG device has a diode connected to the ADS1299, which lights up when the PiEEG device is

initialized. If the life bit is not burning, it is necessary to check the power (Fig.4) in the next points:

TP1: – 2.5V

TP2: 3.3V

TP3: 2.5V

Fig.4. Test points in the PiEEG board

If there is noise in the measured EEG signals that goes beyond the limits declared in the device it is

necessary to check the voltage in the next points:

 VCAP1 = -1.2V

 VCAP2 = 0.001V

 VCAP3 = 4.2V

 VCAP4=-0.125V

5. Conclusion and perspectives

This device is positioned as an easy way to start measuring EEG signals. We introduced hardware and

software for reading and processing data in real-time in open source format. We demonstrated how to

control a robot using a device [5], in the future we will work on the P300 and on other paradigms, then we

plan to gather a team of like-minded people and collect the necessary amount of data to control robots

through the motor imagery method. Fig.5 shows a block diagram for the possibility areas of use of the

device.

https://github.com/vsergeev/c-periphery
https://github.com/Ildaron/EEGwithRaspberryPI/blob/master/pip.txt

Fig.5. possibility areas of use of the PiEEG

Additional Information

 Machine learning to identify alcoholism [9],

 Overview of dry electrodes [6],

 Signal processing [7,8] .

References

1. Rakhmatulin, I., Parfenov, A., Traylor, Z. et al. (2021). Low-cost brain computer interface for everyday

use. ExpBrain Res 239, 3573–3583. https://doi.org/10.1007/s00221-021-06231-49

2. Rakhmatulin, I. (2021). ironbci - Open-source Brain-computer interface with the embedded board to

monitor the physiological subject's condition and environmental parameters arXiv:2111.03656

3. Rakhmatulin, I . (2021). The electronic board to replace the reference voltage on the earlobe for EEG

measurement. March 2021Measurement 173 DOI: 10.1016/j.measurement.2020.108673

4. Rakhmatulin, I. et al. (2021). Raspberry PI Shield - for measure EEG (PIEEG). Conference: 2021 5th

International Conference on Electrical, Electronics, Communication, Computer Technologies and

Optimization Techniques (ICEECCOT). DOI: 10.1109/ICEECCOT52851.2021.9707969

5. I Rakhmatulin, S Volkl. (2022). Brain-Computer-Interface controlled robot via RaspberryPi and PiEEG,

arXiv preprint arXiv:2202.01936

6. Rakhmatulin, I., Gan, Y. Review Dry and Non-Contact EEG Electrodes for 2010-2021 Years. Preprints

2021, 2021030555. doi:10.20944/preprints202103.0555.v1

7. Rakhmatulin, I. (2020). Review of EEG Feature Selection by Neural Networks. Int. J. Sci. Bus. 2020,

4, 101–112. http://dx.doi.org/10.2139/ssrn.3675950

8. Ildar, R. (2021). Progress in neural networks for EEG signal recognition in 2021. arXiv preprint

arXiv:2103.15755

9. Rakhmatulin, I. (2020). Deep learning and machine learning for EEG signal processing on the example

of recognizing the disease of alcoholism. https://doi.org/10.1101/2021.06.02.21258251

10. I Rakhmatulin, S Volkl. (2022). PIEEG: Turn a Raspberry Pi into a Brain-Computer-Interface to

measure biosignals. arXiv:2201.02228

https://doi.org/10.1007/s00221-021-06231-49
http://dx.doi.org/10.2139/ssrn.3675950
https://doi.org/10.1101/2021.06.02.21258251

